Automated Temperature Sampler

Jacob Findlay, Jessica Hampson, Riley Tuttle Technical Director: David Grande

Automated Temperature Sampler

- 4E working in conjunction with EB
- To help the welding technicians

GENERAL DYNAMICS Electric Boat

Project Description

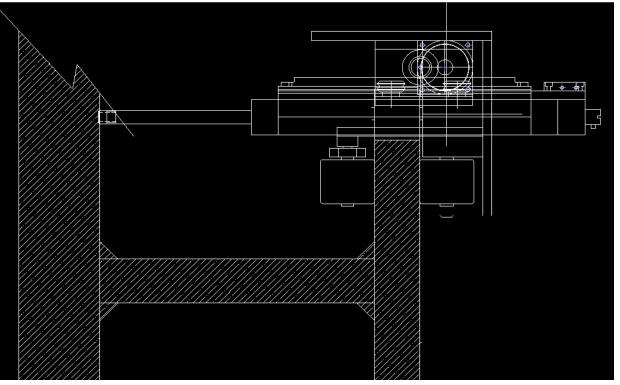
- Structure of a submarine
 - Circular ribs are inserted inside the hull
 - The hull is then heated to temperature
 - Ribs are welded into place

- Heating
 - Hull needs to be the right temperature
 - Too hot or too cold and the hull warps

Project Description

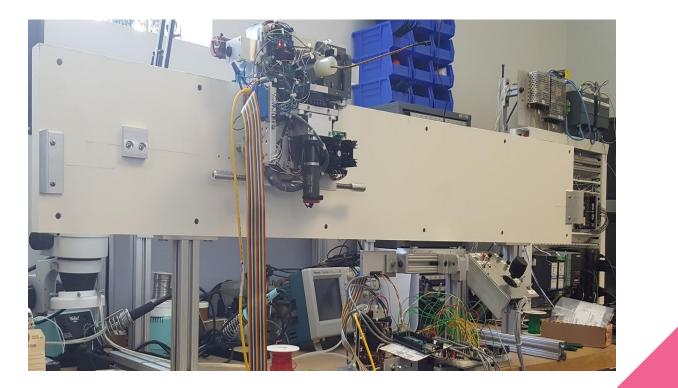
- Old method of monitoring temperature
 - Heating element temperature probes
 - Needed to be retracted

- Older method of monitoring temperature
 - Mark the hull with a crayon and wait for it to melt
 - Could only tell if the hull was above melting point
 - Couldn't tell if temperature was too hot

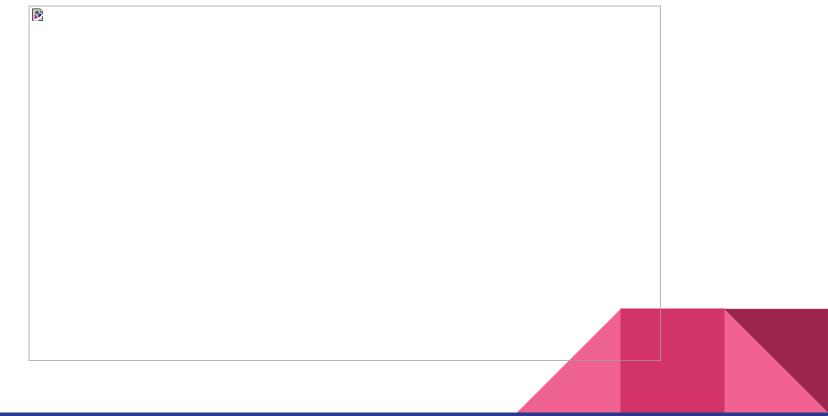


Project Description

- Different Designs
 - Drew multiple designs
 - Different mounting strategies
- Different Design Methods
 - Laser temperature probe
 - Optical sensors are unreliable in this environment
 - Not accurate at high temperatures

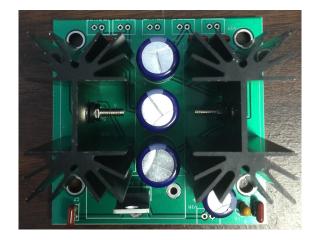


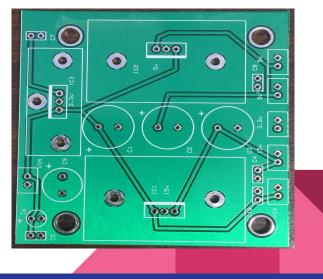
Final Design



Final Design

JH

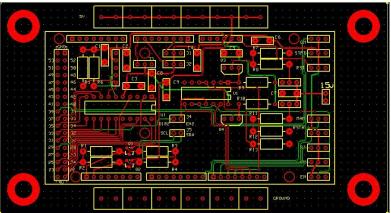

Block Diagram



Components (Power)

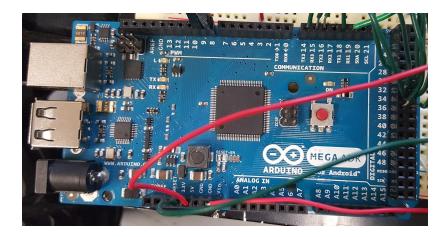
• Power

- Decided on 20 volt power supply
 - Yun draws too much current
 - Large amount of power needed:
 - For motors and microprocessors
- Voltage regulator PCB
 - 3.3v, 5v, and 15v regulators



Components

• PCB


- Used ExpressPCB software to design PCB
- Created to eliminate loose wires on breadboard
- Minimized component space
- Arduino PCB
 - Contained two ATmega168 chips
 - Used for minimizing space
 - Minimized current use compared to UNO

Components (Microcontrollers)

- Microcontroller (controls)/code
 - Arduino mega
 - Master
 - Arduino Yún
 - Writes a datalog text file to the on board sd card
 - Hosts a webserver on the network and serves the text file
 - Atmega 168 chip
 - Controls the temperature probe
 - Take temperatures in from the Max31855

Components (Sensors)

- HRLV-MaxSonar-EZ-Series
 - Ultrasonic Sensor
 - Sends pings that determine distance of objects
 - Using it to detect objects in samplers path to avoid collisions
- Contact sensor
 - Last resort to detect collisions

Components (Sensors)

- Dynapar Series E12 (encoder)
 - Pulses as it spins
- LS7166 24-BIT Quadrature Counter
 - Counts encoder pulses
 - Arduino doesn't count fast enough for encoder
 - Counter is capable of handling the count from encoder

Together used to calculate location

Components (Sensors)

Inductive Sensor

- Sends a signal when sensor is in contact with metal
- It is used for the homing operations

• Thermocouple

- Records temperature samples
- Used to measure temperatures of hull of submarine
- Temperatures sent wirelessly to tablet

Estimated Material Cost list

DF-MD 2A Dual Motor Controller	\$17.05
Dynapar Series E12 Encoder	\$450.00
Arduino Mega 2560	\$51.00
Arduino Yun	\$50.00
micro sd card 2 gb	\$6.49
Atmega 168 chips (slaves)	\$3.50
MAX31855 PMB1 Thermocouple-to-Digital converter	\$20.35
HRLV-MaxSonar-EZ-Series	\$34.95
Pepperl + Fuchs Inductive Sensor NBB5-18GM50-E0	\$23.00
DeWalt 20V Max Premium XR 5.0 Ah Lithium Ion Battery	\$139.00
PCB Express	\$0.00
DF Product Arduino Jumper Cables	\$5.00
Power supply PCB and Motor/Temperature PCB	\$180.06
Motherboard PCB	\$180.06
Gear Motor Probe	\$400.00
Gear Motor Main Drive	\$400.00
Linear VEE Slide Parts/Probe	\$127.24
Encoder Counter Chips	\$37.15
Mechanical Drive Components	\$1,056.27
Electrical Components	\$630.56
Joystick	\$217.59
Test Power Supply	\$99.00
Thermocouple Device	\$18.00
Test Stand Material	\$104.00
Total	\$4,250.27

Prototype

- Gave us an idea of how the sampler will run
 - Testing sensors, components, circuits as a whole
- Semester 1 prototype (RC car)
- Semester 2 prototype (Full scale model)

Problems Along the Way

- So numerous. Only honorable mentions from second semester
 - Interrupts with arduinos
 - Connections to hotspots
 - Making and android list out of an array
 - Wiring the prototype

ABET Outcome C

- Safety constraints
 - Sensors prohibit collisions
 - Functionality was more of a concern
- Economic constraints
 - Extra parts laying around
 - \circ \quad Cost of everything was not too much of a concern

Project Continuation

- Electrical Engineers Work
 - Make the sampler portable
 - Add battery to power components
 - Improve on movement protocols
 - Needs to be less of a demo type movement
 - Protocols/circuits need to be more robust
 - Lots of accidental resets or resets are incorrect

Project Continuation

- Wireless infrastructure that we use could be improved upon
 - Use another Yun as the connection point
 - Figure out how to use a P2P connection

- App needs lots of work
 - Needs to be more visual
- 2 way communication between Tablet and Sampler
 - Start commands
 - Some settings

Demo

Acknowledgments

- David Grande
- Professor Sunak

Questions?

