
Value Prediction

Riley Tuttle
ELE548

May 4, 2018

1 Abstract

Branches and data depencies are two of
the last places in the processor design space
that leave room for improvement. Branch-
ing has had solutions proposed and imple-
mented leaving only the data dependency de-
sign space to improve on. To that end I have
attempted to implement a version of value
prediction proposed in Perais and Seznec
2014 [4]. This implemenation was written in-
side the CVP-1 framework.

While it is still unfinished the imple-
mentation can predict values. With SPEC
CPU2006 benchmarks provided by the com-
petition, my vtage implementation achieved
an average of 31.786% correct predictions.
Confidence thresholds were implemented but
do not currently work due to problems with
the framework. If however they were used
with a condfidence max and threshold of 3 my
vtage predictor predicted correctly 8.485% of
the time and incorrectly .351% of the time.
The other 91% of the time it would not pre-
dict.

2 Related Works

Value prediction is introduced by Li-
pasti et al 1996. In 2014 Perais and Seznec
propose a method for storing values in ta-
bles organized by increasingly longer length

branching histories based on Seznec’s branch-
ing predictors from 2006 and 2011.

3 Paper Outline

The rest of the paper will be outlined
as follows. An explanation of the provided
framework. A brief explanation of the vtage
predictor. Then some implemenation issues
will be addressed. The results will be ex-
plained. Then the future work. Then the
conclusion and references.

4 The Framework

4.1 The CVP-1 simulator

Provided to me was the cvp-1 simula-
tor. It consisted of an abstract class header
file that defined three important function sig-
natures that need to be implemented.

Function 1 getPrediction() This function
provided the dynamic sequence
number, the pc and the piece
number (loaded values could be
split into up to 3 64 bit pieces).
It returns a boolean to decide if
the framework should speculate
or not (should be based on confi-
dence of the prediction).

1



Function 2 speculativeUpdate() This func-
tion provided the same informa-
tion as the getPrediction() func-
tion along with all the necessary
information to construct the cur-
rent branching status. It does not
provide the true value of the in-
struction.

Function 3 updatePredictor() This function
provides a sequence number and
the true value for a predictable
instruction.

4.2 Traces

The traces are the SPEC CPU2006
traces and were provided by the competition.

4.3 Evaluation Metrics

While a few different metrics are pro-
vided by the framework, the most intuitive
to use are correct and incorrect predictions.
However due to that fact that I could not uti-
lize the confidence thresholds (explained in
section 6) I had to add some information to
the correct and incorrect predictions count.
Specifically I had to record the confidence
measure at each correct and incorrect predic-
tion so that I could calculate for myself what
the perdiction performance could have been
with confidence thresholds in place.

5 Vtage Predictor

The predictor is a modified version of an
ITTAGE implementation (Seznec 2011 [3]).
A simplified desription of how the predictor
works follows (For more detailed description
see Seznec et al 2011 [3] and 2014 [4]):

Step 1 getPrediction is called. The pc is
hashed with the global branch history
to get the tag and index of a potential

prediction entry. Tags and indicies of
all history lengths are hashed simul-
taneously.

Step 2 The predictor searches for the longest
and second longest matching tags.
A decision is made on which to use
based on different state variables.

Step 3 speculativeUpdate is called. Use
given information to reconstruct
branch decisions and update global
branch history.

Step 4 updatePredictor is called. Use the
true value of the instruction to up-
date predictions. Rehash the tags and
indicies based on the prediction’s pc
and a copy of the history before it was
updated. We see if the selected entry
matched the true value and update
the entry accordingly. If the predic-
tion was correct increment the confi-
dence counter. If it is incorrect create
a longer history entry with the new
true value.

It is important to note that this is only a
brief description of the overall process. There
are many complications that come from im-
plementation. For instance multiple pcs can
have a prediction before an update is called.
The implementation then requires a queue of
unupdated predictions.

6 Implementation Issues

After the issues I had just getting the
framework to work properly (Boost Libraries
not compiling correctly) and some early mis-
takes (messing up a pointer, etc) I was left
with problems that arose from assumptions
made by the implementation of ITTAGE
that I based my vtage implementation off
of. Firstly there was an assumption that the
updatePredictor function would always be

2



called after the getPrediction function. How-
ever in this framework that was not the case.
Because the values could be split into up to
three pieces there could be up to three pre-
dictions with the same pc before an update
function is called. When the update function
is finally called we no longer have access to
the pc that made the prediction and is now
being updated (we only have the dynamic
sequence number that made the prediction).
This forced me to implement a queue of un-
updated predictions indexed by the dynamic
sequence number.

For the majority of testing my predic-
tor I hardcoded that it should predict all time
regardless of confidence. This was helpful
for me to see what was going on at every
stage of prediction for multiple predictions.
The assumption that I made was that the
framework operated the same way regardless
of the prediction being made or not. Then
once I was content with how my predictor
worked I could filter out some incorrect pre-
dictions by predicting based on a confidence
threshold. What I found out was that the
framework only called the updatePredictor
function reliably if you predicted at every in-
struction. The updatePredictor function is
the only place where I know what the true
value was. Without that I effectively cannot
make longer history entries or update con-
fidence counts. With my current impleme-
nation this caused a negative feedback loop
where initially there would be no predictions
because confidence would be low. However
it would never update the potential predic-
tions by incrementing confidence counters so
the confidence would never increase enough
for the predictor to decide to predict. I was
not able to find a solution for this.

7 Results

Since this was the first value prediction
competition and I can find no existing imple-
mentations I can only compare my impleme-
nation to the base/sample predictor that was
provided by the framework. It was a sim-
ple 2 level predictor. Because there was a
problem with how the framework only called
the update function on predictions I had to
predict every time the getPrediction function
was called even if I knew the prediction had
a low confidence. In order to compare to the
base predictor accurately I changed it so that
it too would predict regardless of confidence.
After running the two predictors through all
the traces provided by the framework I found
that my vtage implemenation correctly pre-
dicted on average 31.786% of the time vs the
base predictor’s 24.637%. So on average 7%
better. If we compare my vtage implementa-
tion across the different types of traces we can
see that it seemed to perform better for the
integer computations over the floating point
computations. see figures 1, 2, and 3.

8 Future Work

Because there were many issues with
the implemenation there is a lot of room for
improvements to my predictor. Obviously
fixing those issues could increase performance
but I think an even larger margin of improve-
ment can be gained by fixing a core problem
with my predictor. It is only able to predict
values that have happened before. Imagine a
simple program that loads 1 value from mem-
ory and loops through only ever incrementing
the value by 1. Even though this is an easily
detectable pattern and calculable result, my
predictor would be wrong every single time.
However I think this could be remedied by at
least 1 extra field in the table entry. In ad-
dition to the table entry that contains a tag,

3



value, counter, and usefulness bit described
in Seznec 2014 [4] I could add a difference
field where the table entry could remember
the difference between its stored value and
the previous prediction made by that pc and
history hash. I say at least 1 entry because I
was assuming some linear function. The dif-
ference field being the slope equivalent and
the base prediction being the offset. If how-
ever the pattern was non linear there would
need to be more fields in the entry.

In addition I would like to add in the
forward probability counters described in Ri-
ley and Zilles 2006 [5] and Pareis and Seznec
2014 [4]. These counters are not meant to
increase performance but instead to decrease
hardware overhead without significantly af-
fecting performance.

9 Conclusion

Even though my vtage implemetation
is laden with problems it still predicts values
and is right a significant amount of the time.
Here I define significant as much better than
a random prediction would be. Even an intel-
ligent guess would be to predict zeros all the
time and that will give an average of 9.8% cor-
rect predictions through all the traces which
is about 20% worse than my vtage implemen-
tation. I know that on average 30% predic-
tion is terrible when you consider that 70% of
the predictions are wrong. However I think it
is important to note that with the use of con-
fidence thresholds I would be able to bring
down the incorrect predictions while main-
taining the correct predictions. In fact when

I did this I was able to eliminate almost all
incorrect predictions (reduced from 68.214%
to .351% incorrect predictions) while main-
taining 8.485% of correct predictions.

If I was to modify further so that the
value predictor was capable of predicting the
difference between predictions along with the
base prediction I know I could capture many
more correct predictions. Not to mention
that without other implemenations it’ is hard
to judge the performance of my implementa-
tion. Although I expect that Seznec’s imple-
mentation (likely available with the competi-
tion results in June) will have a high perfor-
mance, something in the 90% range of correct
predictions.

References

[1] M. Lipasti, C. Wilkerson, and J. Shen.
Value locality and load value prediction.
Proc. of ASPLOS, 1996.

[2] A. Seznec and P. Michaud. A case for
(partially) TAgged GEometric history
length branch prediction. JILP, 8:1-23,
2006.

[3] A. Seznec. A 64-Kbytes ITTAGE indirect
branch predictor. INRIA/IRISA, 2011.

[4] A. Perais and A. Seznec. Practical Data
Value Speculation for Future High-end
Processors IRISA/INRIA, 2014.

[5] N. Riley and C. B. Zilles. Probabilis-
tic counter updates for predictor hystere-
sis and stratification. In Proc. of HPCA,
pages 110-120, 2006.

4



Figure 1: compute fp traces. base avg = 9.7653, myvtage avg = 25.2433

Figure 2: compute int traces 1 (traces split into 2 groups to more easily view). base avg =
22.588, myvtage avg = 35.414

5



Figure 3: compute int traces 2

Figure 4: srv traces 1 (traces split into 4 groups to more easily view). base avg = 28.731,
myvtage avg = 31.144

6



Figure 5: srv traces 2

Figure 6: srv traces 3.

7



Figure 7: srv traces 4.

8


