Classification of Digits

Riley Tuttle

Goals

- Develop classifier for digits set in a 5x5 frame
- Systematically remove information from assumptions

Digits in noise

- Color is grayscale (0,255)
- Ideal digit color is 127
- Becomes a Minimum distance receiver.
- Choose Hi for which:

$$T_{i}(x) = \sum_{n=1}^{N} x[n]s_{i}[n] - \frac{1}{2}\epsilon_{i}$$

is maximum

• Pe = 0

Digits in noise, unknown location

- Becomes minimum distance receiver with unknown arrival time in 2 dimensions
- decide Hi for which:

$$T_i(x) = \max_{\substack{n_0, m_0 \in 1, 16}} \sum_{\substack{n=n_0, m=m_0\\n=n_0, m=m_0}}^{n=N-1, m=M-1} x[n]s_i[n, m] - \frac{\epsilon_i}{2}$$
$$N, M = 20$$

is maximized

- Pe = .0132
- 66 out of 5000

Unknown size

- unknown size is not the same as amplitude because the signal changes.
- same detector as before but optimized over a different parameter
- choose Hi for which:

$$T_i(x) = \max_{s \in 1,3} \sum_{n=0}^{N-1} x[n]s_i[n,s] - \frac{\epsilon_i}{2}$$

is maximum

- Pe = 0
- Errors are small because we sometimes are increasing the energy to noise ratio of the signal

Unknown size and location

- Again a minimum distance receiver optimized over the unknown parameters
- Pe = .0022
- 11 out of 5000

Unknown size, location, rotation

- As before a minimum distance receiver optimized over unknown parameters
- choose Hi for which:

$$T_i(x) = \max_{\substack{n_0, m_0 \in 1, 16 \ s \in 1, 3 \ r \in -\frac{\pi}{4}, \frac{\pi}{4}}} \sum_{\substack{n=n_0, m=m_0}}^{n=N-1, m=M-1} x[n]s_i[n, m, s, r] - \frac{\epsilon_{i, s, r}}{2}$$
$$N, M = 20$$

is maximum.

- Pe = .0076
- 38 out of 5000

Note on translation, scaling, and rotation processes

- Do not take into account interpolation
- Some rotations will come out better than others
- Using the same functions to generate the data and then detect makes the error very low.

Written digits

- Low error isn't really that accurate
- The problems weren't really different
- Use the same detector from previous slide on a different data set.
- Pe = .6884
- Pretty good compared to random classifier.

Written digits cont.

- Notice that written digits have smoother edges.
- blur the templates to make them closer the written digits.

• Simple 3x3 pixel averager

Written digits cont.

- After using the detector with blurred templates.
- Pe = .5174
- much better than random classification
- even pretty good compared to previous Pe = .6884

digit		1	2	3	4	5	6	7	8	9	0
	1	492	4	0	0	0	0	3	0	1	0
	2	79	207	68	40	5	2	43	24	7	25
	3	101	33	160	8	70	2	37	14	20	55
	4	8	19	5	353	17	18	22	19	19	20
	5	14	23	27	19	252	16	53	9	15	72
	6	8	25	8	23	118	227	1	11	41	38
	7	143	11	9	3	2	1	313	6	3	9
	8	149	62	41	22	89	25	11	48	39	14
	9	70	4	13	111	32	15	94	8	110	43
	0	1	4	41	2	4	92	26	22	57	251

Written digits cont.

- I think that I could improve the performance even more if I fixed the translation, scaling, and rotation processes to include interpolation.
- Maybe added a shrinker/stretcher process to account for slender digits like '8'.
- Obviously working with higher resolution images would help
- At that point the calculations would take prohibitively long.
 - \circ a relatively small data set of 5000 images took about 1 hour to do the calculations on