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1 Goal

The goal of this project is to develop a detector to classify printed digits in a frame. There
will be a few different problems addressed in this report. All of these problems will be
multiple hypothesis classification problems because the image can be any of 10 different
digits. The case of no digit will be ignored in this project. Each problem will assume less
and less is known about the digit.

2 Digits

Each digit will be a 5x5 pixel image set in a 20x20 pixel frame as can be seen seen in figure 2.
Each pixel will be considered centered in the 20x20 frame such that the top left pixel of the
5x5 pixel digit is located at frame pixel location (7,7) as seen in figure 1 The pixel location
will be considered as a coordinate plane with origin in the top left corner and the y axis will
be positive when counting from top to bottom. Each pixel will be grayscale from 0 to 255.
Without any noise the color of the digit will be in the middle at 127 and the background
will be 0. For each Problem there will be 5000 test digits to test the detector’s simulated
performance.

3 Problem of known digits

The first trivial detector assumes no noise nor any kind of distortion. This detector is simply
a classifer for the 10 possible digits (signals). We look at the data as a vector of 400 (20x20)
values to make calculations easier. The problem then becomes:

Under Hi : X[n] = si[n]

i = 1, 2, ..., 10 n = 1, 2, ..., 400

In order to avoid indexing problems with matlab i = 10 refers to digit ”0”. Because every-
thing is known and there is no noise a special case of the minimum distance receiver can be
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Figure 1: The number 3 centered at frame location (7,7).

used to classify the images. We would decide Hi for which:

T (x) =
N−1∑
n=0

x[n]− s[n] = γ′ = 0;

Since there is no noise and I would expect perfect detection and in fact I am not even going
to simulate this. Instead I will move on to a more interesting detector.

4 Problem of digits embedded in noise

For the first real detector we assume that we know each digit exactly along with its size and
location in the frame. The unknowns are the color of each pixel and of course which digit
it is. The color of the pixel will be a RV with an approximate distribution ∼ N (127, 127)
under Hf and ∼ N (0, 127) under Hb (where Hf refers to a pixel that is part of the image

Figure 2: 5x5 digits.
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foreground picture and Hb refers to a pixel that is part of the image background. Those
distributions are approximate because the values need to be constrained to be between 0
and 255.

Similiar to the previous section we have:

Under Hi : X[n] = si[n] + w[n]

i = 1, 2, ..., 10 n = 1, 2, ..., 400

Notice the noise added to the signal. Where the noise w[n] ∼ N (127, 127). This problem is
solved using a Minimum Distance Receiver as outlined in section 4.5.1 and example 4.6 of
the book. We decide Hi for which:

Ti(x) =
N∑
n=1

x[n]si[n]− 1

2
εi

is maximum. Since this is a case of 10 hypotheses the calculation for probability of error Pe
will be difficult to calculate but I can provide a upper bound on the error using equation
(4.28) from the book. equation (4.28) assumes the same energy ε for each hypothesis in order
to simplify calculation but if they are all different the error will go down.

Pe = 1−
∫ ∞
−∞

ΦM−1(u)
1√
2π
exp[−1

2
(u−

√
ε

σ2
)2] du (1)

where u = (t+ 1
2
)/
√
σ2ε. My simulation error was Pe = 0.

5 Problem of unknown digit location embedded in noise

For this problem we assume that the digit can be anywhere inside the frame such that the
entire digit is still contained in the frame. This means that in addition to the noise in the
color the digit can have a shift that is distributed as ∼ N (.5, 7.5) in both the X and Y
direction. Again this distribution is approximate because the digit needed to be constrained
to the frame and pixels are discrete. This becomes a problem of unknown arrival time but
in 2 dimensions so that

Under Hi : X[n] = si[n− n0,m−m0] + w[n]

i = 1, 2, ..., 10 n,m = 1, 2, ..., 20 n0,m0 ∈ 1, 2, ..., 16

The GLRT statistic then becomes a maximization of the test statistic over the arrival time
parameters:

T (x) =
N−1∑
n=0

x[n]si[n]− 1

2
εi (2)

becomes:

Ti(x) = max
n0,m0∈1,16

n=N−1,m=M−1∑
n=n0,m=m0

x[n]si[n,m]− εi
2

N,M = 20
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Then we decide Hi for which Ti(x) is maximum. Finding the performance of this classifier
is difficult because the signals at different arrivals are correlated. Finding the maximum of
a sum of correlated signals is difficult. My simulated Pe was 0.0132 which equates to 66
incorrect decisions out of 5000.

6 Problem of unknown digit size

For this problem each digit has a scale that is distributed as ∼ U(1, 3). The process I used
to scale digits assumes discrete scales so as to avoid dealing with interpolation. In a future
version of the project a different scaling algorithm could be developed takes interpolation
into account. The upper bound of scaling is 3 because the any larger scaling factors would
produce digits that are larger than the 20x20 frame. This problem ends up being very similar
to the previous one. In fact it is the same detector maximized over the scaling parameter
instead of the translation parameters such that we decide Hi for which:

Ti(x) = max
s∈1,3

N−1∑
n=0

x[n]si[n, s]−
εi
2

It is important to remember that s is not an amplitude because scaling a digit changes the
nature of the signal. My simulated Pe was 0. I think it makes sense to have have a smaller
Pe in comparison to the problem of unknown location because when the digits are larger but
the frame remains the same size, thus the energy to noise ratio is increased.

7 Problem of unknown digit size and location

Again this problem is just an extension of the previous 2 problems. The detector simply
maximizes over the translation paramters as well as the scaling parameters. After simulating
the Pe was .0022 which equates to about 11 errors out 5000.

8 Problem of unknown size, location, and rotation

This problem assumes the same unknowns as the previous problem with the added unknown
rotation parameter. The rotations of the digits are distributed as ∼ U(−π

4
, π
4
) in radians.

For the same reason that the scaling process was very limited the rotation process is very
approximate. The rotation process does not interpolate at all so some of the images can be
good (see figure 3) and some can look very skewed (see figure 4). That being said, the
detector is again very similar to the previous ones, it just maximizes over another parameter
set such that we decide Hi for which:

Ti(x) = max
n0,m0∈1,16 s∈1,3 r∈−π

4
,π
4

n=N−1,m=M−1∑
n=n0,m=m0

x[n]si[n,m, s, r]−
εi,s,r

2
(3)

N,M = 20
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Figure 3: An example of a good rotation.

After using this detector my simulated performance Pe was .0076 which equates to 38 errors
out of 5000.

9 Problem of written digits

For all the previous problems the detector didn not really change between them, it just
maximizes over more and more parameters. What’s more is that I generated the data, and
classified using the same translation, scaling and rotation processes, so of course my error
rates are going to be low i.e. Pe < .05. In order to give the detector a real test I wanted
to use it on more challenging data set. For this problem I have a set of 5000 written digits
that I want to classify. A sample of those digits can be seen in figure 5. After just applying
the same detector from the previous section I get a Pe = .6884. That is not very good but
considering that random classification would result in a Pe = .9 it becomes comparably much
better. One thing that might be noticed when comparing the printed digits to the written
digits is the difference in edges. The printed digits have ”sharp” edges as in they will have
potentially very large differences in adjacent pixels whereas the written digits are a little
bit smoother. So as an extension of this detector I first smoothed the template digit. That
means running every s[n,m, s, r] from equation 3 through a simple 3x3 pixel averager. After
using this detector with blurred templates my simulated performance was was decreased
to Pe = .5174. Again that is not very good but it is much better than random chance of
Pe = .9 and it is even significantly better than the previous Pe = .6884 with about a 17%
improvement. A breakdown of the perfomance can be seen in figure 6. The rows of figure
6 represent what the digit was and the columns represent what the detector chose. So all
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Figure 4: An example of a bad rotation.

the rows should sum up to 500 because there were 500 of each digit. An example of reading
the table is as follows: Looking only at row ’2’ would be looking at all the sample digits
that were actually ’2’. The detector falsly classified the digit ’2’ as the digit ’1’ 79 times. It
correctly classified it 207 times. It falsly classified the digit ’2’ as the digit ’3’ 68 times so on
and so forth. As can be seen the detector classifies almost perfectly all the ’1’s. A lot of ’6’s
got classified as ’5’s. That makes sense because those digits look pretty similar. I’m guessing
that very few things got classified as ’8’s because the templates had more power than any
written digits had. Because the template for ’8’ has a high energy the energy compensation
term of − ε

2
would drive down the test statistic of any potential ’8’s causing them to be

classified as something else. I would speculate that is because most people draw ’8’s as more
slender than a printed ’8’ would look leading to a template that has much more energy than
the written digit. I think that the classifier could perform even better if I was to develop more
robust translation, scaling, and rotation processes that incorporated interpolation. However
I will note that at that point it might take prohibitively long to do the calculations for even
this relatively small (5000 samples) data set. At that point a different approach, perhaps
involving machine learning, might be better suited for this problem.

Figure 5: A sampling of the written digits.
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Figure 6: A breakdown of the results for classifying written digits with blurred templates.
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